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Pen-Based Math 

• Input for CAS and document processing. 
• 2D editing. 
• Computer-mediated collaboration. 



Pen-Based Math 
• Different than natural language recognition: 

– 2-D layout is a combination of writing and drawing. 
– Many similar few-stroke characters. 
– Many alphabets, used idiosyncratically. 
– Many symbols, each person uses a subset. 
– No fixed dictionary for disambiguation. 

 

 
 



Orthogonal Series Representation 
 

• Main idea:  
Represent coordinate curves as truncated orthogonal series. 
 

• Advantages: 
– Compact – few coefficients needed 
– Geometric  

– the truncation order is a property of the character set 
– gives a natural metric on the space of characters 

– Algebraic  
– properties of curves can be computed algebraically 
   (instead of numerically using heuristic parameters)  

– Device independent  
– resolution of the device is not important 

 



Inner Product and Basis Functions 



First Look: Chebyshev Series 

• Initially used Chebyshev series  
[Char+SMW ICDAR 2007]. 
 

• Found could approximate closely  
(small RMS error) with series of order 10. 
 

• Like symbols tended to form clusters. 
 



Problems 
• Want fast response –  

how to work while trace is being captured. 
 

• Low RMS does not mean similar shape. 
 
 
 
 
 



On-Line Series Coefficients 



Shape vs Variation 



Legendre-Sobolev Basis 



Life in an Inner Product Space 
 

• With the Legendre-Sobolev inner product we have 
– Low dimensional rep for curves (10 + 10 + 1) 
– Compact rep of samples ~ 160 bits [G+W 2009] 
–  >99% linear separability => convexity of classes 
– A useful notion of distance between curves  

that is very fast to compute  
 
 



Distance Between Curves 
• Elastic matching: 
• Approximate the variation between curves 

by some fn of  distances between sample points. 
• May be coordinate curves 

or curves in a jet space. 
 

• Sequence alignment 
• Interpolation (“resampling”) 

 
• Why not just calculate the area? 
• This is very fast in ortho. series representation. 

 



Distance Between Curves 



Comparison of Candidate to Models 

• Use Euclidean distance in the coefficient space. 
 

• Just as accurate as elastic matching. 

• Much less expensive. 

• Linear in d, the degree of the approximation. 
< 3 d  machine instructions (30ns) vs  several thousand! 

• Can trace through SVM-induced cells incrementally.  
 
• Normed space for characters gives other advantages.  



The Joy of Convex 

• Can compute distance of a sample to this line 
• Distance to convex hull of nearest neighbours in class 
  gives best recognition  [Golubitsky+SMW 2009,2010] 



Choosing between Alternatives 

 

The nearest convex hull  
of neighbors is red.  



Transformation-independent recognition

Rotation- and shear-independent recognition can be achieved by
computing invariant functions from the coordinates of a character.

Then, similar to the coordinate functions, the invariants can be
approximated with orthogonal polynomials and their coefficients used in
recognition.

We have shown in the past, that integral invariants can be a suitable
descriptor of online handwritten characters.



The main contributions of this work

Optimization of isolated character recognition by adjusting the

“jet scale” in the LS inner product for coordinate functions and integral
invariants

degree of approximation of coordinate functions and integral invariants.

An in-context rotation-invariant algorithm that yields substantially better
results than isolated recognition and can be extended to other
transformations.



Coordinate Functions

The optimal µ for approximation of coordinate functions was found to
minimize classification error.

The original characters in the dataset were considered without any
distortions.

The characters were approximated with corresponding values of µ in the
range from 0 to 0.2.



Complexity of Handwritten Characters

We considered the possibility that the optimal value of µ might depend
on the nature of the characters to be recognized.

We took the notion of a sample’s complexity as

η =

d∑
i=1

(X
1/i
i + Y

1/i
i ), |Xi| ≤ 1 and |Yi| ≤ 1

where Xi and Yi are normalized coefficients of approximation of the
sample with orthogonal polynomials

The sample complexity function is derived from the fact that coefficients
of higher degree are typically greater for “complex” characters –
characters that contain large number of loops and/or amount of
curvature.



In-context transformation-invariant recognition

Recognition of distorted math symbols without context is sometimes
impossible

“<” vs ∠, “|” vs “/”, “∪” vs “⊂

It has been shown that n-grams provide useful semantic information in a
mathematical setting.

We use context to improve distortion-independent classification, taking
advantage of the fact that samples written by a person typically exhibit
similar degree of transformation.

We consider the case of rotation (shear and other transformations may be
handled similarly).



Experimental setting

The testing set was represented in InkML format.

It contains 50,703 characters in 242 classes.

Class labels incorporated the number of strokes (therefore, single-stroke
and double-stroke “7” were considered as different classes).

Figure: Characters from the training dataset

The model was trained with non-transformed samples.

For the recognition phase, sequences of n characters were taken from the
dataset and each sequence was rotated by a random angle γ ∈ [−β, β].



Coordinate functions

The figure shows the error of recognition using coefficients of X and Y .

Figure: Recognition error of non-transformed characters for different values of µ

≈ 2.4% error is reached for µ = 0.04.



Optimal µ for characters with different complexities

We found that the optimal µ is not strongly correlated with the
complexity of characters.

Results of Spearman and Kendall tau-a correlation tests between
complexity and µ are respectively: ρµ,η(13) = 0.52, p = 0.047 and
τµ,η(13) = 0.38, p = 0.053.



I0

Figure: Average maximum error in coefficients of I0 depending on µ



I1

(a)

Figure: Average maximum error in coefficients of I1 depending on µ



Degree of Approximation

Table: Recognition error (Rec.Err.), maximum approximation error (Max.Err.)
and average relative approximation error of coordinates (Avg.Err.) for different
degrees of approximation d, µ = 0.04

d 9 10 11 12 13 14 15

Rec.Err. % 2.57 2.49 2.46 2.43 2.44 2.45 2.46

Max.Err. 707 539 539 484 475 494 500

Avg.Err.(×10−3) 1.9 1.6 1.4 1.2 1.1 1.0 1.2

We find degree 12 to be the optimum for recognition of symbols in our
collection.



In-Context Classification: Parameters
There are 3 parameters that in-context recognition rate can depend on:

Number p of closest classes in computation of error likelihood.

Rotation angle.

Size n of the set of characters.



Evaluatoin of p

We fixed the parameter n = 3.

Performed classification for values p of 2, 3 and 4.

We found that p has almost no effect on recognition error.

We took p = 3 and continued the experiments.



Evaluation of n and the rotation angle

Figure: Recognition error (%) for different size of context n and different angles
of rotation (in radians)

A significant reduction in error is achieved between n = 1 and n = 3.



Contributions of the presented work

The optimal range of values for the jet scale for coordinate basis functions.

A study that demonstrates that this optimal value of µ, to a first
approximation, does not depend on the complexity of the characters
tested.

The optimal values for the jet scale for the integral invariants I0 and I1,
used in rotation-independent recognition.

The optimal degree of the approximating series.

An algorithm for orientation-invariant in-context classification by
considering characters in groups.
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