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Pen-Based Math
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e |nput for CAS and document processing.
e 2D editing.
e Computer-mediated collaboration.



Pen-Based Math

e Different than natural language recognition:
— 2-D layout is a combination of writing and drawing.
— Many similar few-stroke characters.
— Many alphabets, used idiosyncratically.
— Many symbols, each person uses a subset.
— No fixed dictionary for disambiguation.
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Orthogonal Series Representation

e Main idea:
Represent coordinate curves as truncated orthogonal series.

 Advantages:
— Compact — few coefficients needed

— Geometric
—the truncation order is a property of the character set
— gives a natural metric on the space of characters

— Algebraic
— properties of curves can be computed algebraically
(instead of numerically using heuristic parameters)

— Device independent
— resolution of the device is not important



Inner Product and Basis Functions

Choose a functional inner product, e.g.
b

(f,g) = f F(OgOWDdt

a

This determines an orthonormal basis in the
subspace of polynomials of degree d.

Determine ¢; using GSon {1,¢,t% t3,...}.

Can then approximate functions in subspaces

A(t) = Xoaipi(t)  a; = (A(D), ¢i (D))



First Look: Chebyshev Series

e |nitially used Chebyshev series
[Char+SMW ICDAR 2007].

 Found could approximate closely
(small RMS error) with series of order 10.

e Like symbols tended to form clusters.



Problems

 Want fast response —
how to work while trace is being captured.

e Low RMS does not mean similar shape.
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On-Line Series Coefficients

Use Legendre polynomials P; as basis on the interval [—1,1],
with weight function 1.

Collect numerical values for f (1) on [0, L].
A =arc length.

L is not known until the pen is lifted.

As the sample points are collected, numerically integrate the

moments | ALf(1)dA.

After last point, compute series coefficients for f
with domain and range scaled to [—1,1].

This uses a simple linear transformation of the moments.



Shape vs Variation

The corners are not in the right places. C 6

Work in a jet space to force coords & derivatives close.

Use a Legendre-Sobolev inner product
b b b
{f,9) =f f(t)g(t)dtwlf f’(t)g’(t)dth[ () g" (t)dt + -

1stjet space = set u; = Ofori > 1.
— Choose u; experimentally to maximize reco rate.

— Can be also done on-line.
[Golubitsky + SMW 2008, 2009]



Legendre-Sobolev Basis
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Life in an Inner Product Space

 With the Legendre-Sobolev inner product we have
— Low dimensional rep for curves (10 + 10 + 1)
— Compact rep of samples ~ 160 bits [G+W 2009]
— >99% linear separability => convexity of classes

— A useful notion of distance between curves
that is very fast to compute



Distance Between Curves

Elastic matching:

Approximate the variation between curves
by some fn of distances between sample points.

May be coordinate curves
or curves in a jet space.

Sequence alignment
Interpolation (“resampling”)

Why not just calculate the area?
This is very fast in ortho. series representation.



Distance Between Curves
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Comparison of Candidate to Models

Use Euclidean distance in the coefficient space.

Just as accurate as elastic matching.
Much less expensive.

Linear in d, the degree of the approximation.
< 3 d machine instructions (30ns) vs several thousand!

Can trace through SVM-induced cells incrementally.

Normed space for characters gives other advantages.



The Joy of Convex

* Linear separability = Convexity
= Linear homotopies stay within a class

A A AL

C=(1-t)A+tB

- Can compute distance of a sample to this line
 Distance to convex hull of nearest neighbours in class
gives best recognition [Golubitsky+SMW 2009,2010]



Choosing between Alternatives

R ——
The nearest convex hull ®
of neighbors is red.
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Transformation-independent recognition

@ Rotation- and shear-independent recognition can be achieved by
computing invariant functions from the coordinates of a character.

@ Then, similar to the coordinate functions, the invariants can be
approximated with orthogonal polynomials and their coefficients used in
recognition.

@ We have shown in the past, that integral invariants can be a suitable
descriptor of online handwritten characters.



The main contributions of this work

@ Optimization of isolated character recognition by adjusting the

e “jet scale” in the LS inner product for coordinate functions and integral
invariants

o degree of approximation of coordinate functions and integral invariants.

@ An in-context rotation-invariant algorithm that yields substantially better
results than isolated recognition and can be extended to other
transformations.



Coordinate Functions

@ The optimal p for approximation of coordinate functions was found to
minimize classification error.

@ The original characters in the dataset were considered without any
distortions.

@ The characters were approximated with corresponding values of y in the
range from 0 to 0.2.



Complexity of Handwritten Characters
@ We considered the possibility that the optimal value of x might depend
on the nature of the characters to be recognized.

@ We took the notion of a sample's complexity as

d
n=> (X" + v x| <1and |vj <1

=1

where X; and Y; are normalized coefficients of approximation of the
sample with orthogonal polynomials

@ The sample complexity function is derived from the fact that coefficients
of higher degree are typically greater for “complex” characters —
characters that contain large number of loops and/or amount of
curvature.



In-context transformation-invariant recognition
@ Recognition of distorted math symbols without context is sometimes
impossible

n<n VS 4, n|n Vs “ n, “U” Vs “C

@ It has been shown that n-grams provide useful semantic information in a
mathematical setting.

@ We use context to improve distortion-independent classification, taking
advantage of the fact that samples written by a person typically exhibit
similar degree of transformation.

@ We consider the case of rotation (shear and other transformations may be
handled similarly).



Experimental setting

@ The testing set was represented in InkML format.
@ It contains 50,703 characters in 242 classes.

o Class labels incorporated the number of strokes (therefore, single-stroke
and double-stroke “7" were considered as different classes).
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Figure: Characters from the training dataset

@ The model was trained with non-transformed samples.

@ For the recognition phase, sequences of n characters were taken from the
dataset and each sequence was rotated by a random angle v € [—f, f].



Coordinate functions

@ The figure shows the error of recognition using coefficients of X and Y.
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Figure: Recognition error of non-transformed characters for different values of p

@ =~ 2.4% error is reached for u = 0.04.



Optimal pu for characters with different complexities

o We found that the optimal pu is not strongly correlated with the
complexity of characters.
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@ Results of Spearman and Kendall tau-a correlation tests between
complexity and 1 are respectively: p, ,(13) = 0.52,p = 0.047 and
Tuy(13) = 0.38,p = 0.053.



Error
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Figure: Average maximum error in coefficients of I, depending on u
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Degree of Approximation

Table: Recognition error (Rec.Err.), maximum approximation error (Max.Err.)
and average relative approximation error of coordinates (Avg.Err.) for different
degrees of approximation d, p = 0.04

d 9 [ 10 [ 11 [ 12 [ 13 [ 14 | 15
Rec.Err. % 2.57 | 2.49 | 2.46 | 2.43 | 2.44 | 2.45 | 2.46
Max.Err. 707 | 539 | 530 | 484 | 475 | 494 | 500
AvgErr (x1073) [ 1.9 | 16 | 1.4 | 12 | 1.1 | 1.0 | 1.2

We find degree 12 to be the optimum for recognition of symbols in our
collection.



In-Context Classification: Parameters
There are 3 parameters that in-context recognition rate can depend on:

@ Number p of closest classes in computation of error likelihood.
@ Rotation angle.

@ Size n of the set of characters.



Evaluatoin of p

o We fixed the parameter n = 3.
@ Performed classification for values p of 2, 3 and 4.
@ We found that p has almost no effect on recognition error.

@ We took p = 3 and continued the experiments.



Evaluation of n and the rotation angle
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Figure: Recognition error (%) for different size of context n and different angles
of rotation (in radians)

A significant reduction in error is achieved between n =1 and n = 3.



Contributions of the presented work

@ The optimal range of values for the jet scale for coordinate basis functions.

A study that demonstrates that this optimal value of y, to a first
approximation, does not depend on the complexity of the characters
tested.

The optimal values for the jet scale for the integral invariants Iy and Iy,
used in rotation-independent recognition.

(]

The optimal degree of the approximating series.

An algorithm for orientation-invariant in-context classification by
considering characters in groups.
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