
LINEAR COMPRESSION OF DIGITAL INK
VIA POINT SELECTION

VADIM MAZALOV AND STEPHEN M. WATT
DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF WESTERN ONTARIO,

LONDON, CANADA

ABSTRACT
We present a method to compress digital ink based

on piecewise-linear approximation within a given er-
ror threshold. The objective is to achieve good com-
pression ratio with very fast execution. The algorithm
is especially effective on types of handwriting that
have large portions with nearly linear parts, e.g. hand
drawn geometric objects. We compare this method
with an enhanced version of our earlier functional ap-
proximation algorithm, finding the new technique to
give slightly worse compression while performing sig-
nificantly faster. This suggests the presented method
can be used in applications where speed of processing
is of higher priority than the compression ratio.

INTRODUCTION
In this work we address the question of how to

preserve the high precision of a curve, while decreas-
ing the number of points representing it. The method
can be viewed as a dynamic adjustment of the density
of points, depending on the shape of a stroke. More
points are removed from straighter regions than re-
gions with high curvature. We have two subproblems
that need to be solved:

1. decomposition of digital ink into inflection-free
parts, and

2. compression of the individual pieces.

We measure the compression rate and time re-
quired to process the experimental datasets and com-
pare with the performance of the enhanced functional
compression. While losing in compression, the linear
method is found to perform more than 100× faster.

FUNCTIONAL COMPRESSION
The functional approximation technique is based

on piecewise approximation of curves by truncated se-
ries in an orthogonal polynomial basis. In the past,
we experimented with different orthogonal polyno-
mial basis. We found Chebyshev polynomials to give
the best results, and in this work, we improve their
performance. The improvement is to be achieved by
representing coefficients in a more compact form.

We consider the adaptive segmentation scheme.
Coefficients are recorded as floating-point numbers
with base 2. The significand and the exponent are
two’s complement binary integers, encoded in a and p
bits respectively. The value of p is fixed, and the value
of a is dynamically adjusted for each stroke. The fol-
lowing representation of each information channel of
a trace i is proposed:

• Encode the 0 order coefficient in 2a+p bits, since
this coefficient regulates the initial position of
the trace and is typically larger than the rest of
the coefficients. This number of bits is device-
dependent.

• Find the coefficient cM = max |ci|, i = 1..d and
encode it in a+ p bits.

• Encode coefficients cj , j = 1..d, as two’s com-

plement binary integers rj =
⌊
|cM |
cj

⌉
in br bits,

where bxe represents rounding of x to the inte-
ger.

Thus, a trace i is recorded as

aidiλ1c10c1Mr11...r1diλ2c20c2Mr21...r2di ...λD

where ai is the number of bits for encoding the signif-
icand; di is the degree of approximation; λj is the ini-
tial value of parameterization of a piece j; cj0 is the
0-order coefficient; cjM = max |cjk|, k = 1..d; rjk =⌊
|cjM |
cjk

⌉
, cjk is the k-th coefficient of the j-th piece. This

differs from the previous method by having the coef-
ficients cj represented as scalings rounded to integers
rather than as significand-exponent pairs.

RESULTS

εmax = 1 εmax = 5 εmax = 10 εmax = 15

Handwriting Geometric objects

Table 1: Time (in seconds) for compression of the handwriting dataset
````````Method

εmax 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L 25 20 21 21 17 17 17 19 18 15 16 15 15 20 16
F 879 1083 1287 1498 1700 1982 2188 2326 2479 2618 2727 2915 3019 3138 3327

INFLECTION-FREE PARTS
First, the curve should be decomposed into parts

where the second derivative has constant sign, i.e the
normal vector in the Frenet frame is pointing to the
same side of the curve.

Algorithm 1 FormInflectionFreeSegments()
Input: Points – a stream of input points
Output: C – a list of inflection-free segments

C ← [ ] {list of inflection-free segments found}
S ← [ ] {current segment being collected}
i ← 0 {index of current point without duplication}
while Points.hasNext() do
P ← Points.getNext()
if i = 0 or P 6= Pi−1 then
Pi ← P
if |S| ≥ 2 then

if Pi = P0 then
Append the list S to the end of the list C
S ← [ ]

else
Ai ← Angle(Pi−2, Pi−1, Pi)− π
ABeg ← Angle(Pi, P0, P1)− π
AEnd ← Angle(Pi−1, Pi, P0)− π
if Ai ×Ai−1 < 0
or Ai ×AEnd < 0 or ABeg ×AEnd < 0 then

Append the list S to the end of the list C
S ← [ ]

end if
end if
Append Pi to the end of the list S
i← i+ 1

end if
end if

end while
If S is non-empty, append it to the end of the list C
return C

COMPRESSION OF PARTS
If either the maximal error || · ||max or the root mean

square error ||·||rms on an interval is greater than the re-
spective thresholds εmax or εrms, the curve is split into
two parts, see Algorithm 2.

Definition We write pw(L) for the piecewise linear
curve defined by the list of points L. If two points a
and b occur in a list L, with a preceding b, then we say
that [a, b] is an interval in L. We write L|I for the sublist
of L restricted to the interval I .

Algorithm 2 CompressCurve(S,R)
Input: S – a list of points for an inflection-free segment

R – a partitioning rule (rule 1 or 2)
Output: L – a list of points such that
||pw(S)− pw(L)||max < εmax and
||pw(S)− pw(L)||rms < εrms

{J is a stack of intervals to be refined.}
J ← [ Interval with first and last point of S ]
L← [ ]
while J 6= [ ] do
j ← Pop an interval from J
a← j.first; b← j.last
if ||pw(S|j)− pw(j)||max > εmax

or ||pw(S|j)− pw(j)||rms > εrms then
{Split j according to rule R at some point c in S}
j1 ← [a, c]
j2 ← [c, b]
Push j2 and then j1 onto the stack J

else
Append a and then b to the end of list L

end if
Remove element j from J

end while
return L

CONCLUSION
The decomposition algorithm processes each incoming point in constant time O(1). The best case time com-

plexity of compression of a piece isO(n). If the splits are made unequally, always splitting n points as 1 and n−1,
then the cost is O(n2).

Our experiments show the piecewise linear approximation method to perform about 100× faster than the
functional approximation algorithm, but it yields a less compact representation.


